Real-Time GA-Based Probabilistic Programming in Application to Robot Control

نویسندگان

  • Alexey Potapov
  • Sergey Rodionov
  • Vita Potapova
چکیده

Possibility to solve the problem of planning and plan recovery for robots using probabilistic programming with optimization queries, which is being developed as a framework for AGI and cognitive architectures, is considered. Planning can be done directly by introducing a generative model for plans and optimizing an objective function calculated via plan simulation. Plan recovery is achieved almost without modifying optimization queries. These queries are simply executed in parallel with plan execution by a robot meaning that they continuously optimize dynamically varying objective functions tracking their optima. Experiments with the NAO robot showed that replanning can be naturally done within this approach without developing special plan recovery meth-

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Load-Frequency Control: a GA based Bayesian Networks Multi-agent System

Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...

متن کامل

Simulation of Position Based Visual Control and Performance Tests of 6R Robot

This paper presents simulation and experimental results of position-based visual servoing control process of a 6R robot using 2 fixed cameras. This method has the ability to deal with real time changes in the relative position of the target-object with respect to robot. Also, greater accuracy and independency of servo control structure from the target pose coordinates are the additional advanta...

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Ball Trajectory Estimation and Robot Control to Reach the Ball Using Single Camera

In robotics research, catching a projectile object with a robotic system is one of the challenging problems. The outcome of these researches can be used in a wide range of applications such as video surveillance systems, analysis of sports videos, monitoring programs for human activities, and human-machine interactions. In this paper, we propose a new vision-based algorithm to estimate the traj...

متن کامل

Optimized Joint Trajectory Model with Customized Genetic Algorithm for Biped Robot Walk

Biped robot locomotion is one of the active research areas in robotics. In this area, real-time stable walking with proper speed is one of the main challenges that needs to be overcome. Central Pattern Generators (CPG) as one of the biological gait generation models, can produce complex nonlinear oscillation as a pattern for walking. In this paper, we propose a model for a biped robot joint tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016